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The method of replication is frequently used by simulators to estimate

steady-state quantities. In this paper, we obtain conditions under which this

method yields asymptotically valid confidence intervals for steady-state

. means.
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SI(,NI1, tC;\NCL AND EXPLANATION

Consider a stochastic system which is stable in the sense that it obeys

at, ergodic theorem. Simulators are frequently interested in estimating the

steady-state ergodic limit. ror example, in a queueing system, one often

wants to analyze the long-run number of customers in queue. One popular

method for estimating steady-state parameters involves generating independent

replicates of the stochastic system; each replicate consists of the time

* evolution of the system up to some large (but finite) time horizon. In this

paper, we obtain conditions under which this easily implemented method yields

asymptotically valid confidence intervals for steady-state means.

6

T.o zr; sponsibility for the wordinl'i and views expressed in this descr3jptive
,u17r,-r/ lies with MRC, and n,)t with the author of this report.
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LIMIT THEOREMS FOR THE METHOD OF REPLICATION

Peter W. Glynn

1. Introduction

Let Y - {Y(t) : t ) 0) be a real-valued stochastic process for which there exists a

constant r such that

Y(t) > r

as t + , where Y(t) - t Y(s)ds and -> denotes weak convergence. The parameter

r is called the steady-state mean of Y.

Simulators are frequently interested in estimating steady-state means. One popular

procedure for accomplishing this, called the method of replication, involves simulating

independent copies of the process Y. The independence of the copies (also known as

- replicates) simplifies construction of confidence intervals, since certain classical

statistical procedures then become applicablel see LAW and KELTON (1982), section 8.6, for

a discussion of this approach to steady-state simulation. Our purpose, in this paper, is

to determine precise conditions under which the method of replication is asymptotically

valid.

"" One important feature of this study is that we allow schemes in which the number of

replications is allowed to converge to infinity with the run-length of the simulation.

This is done for two reasons. Firstly, it has been shown by Schmeiser [9) that in an

asymptotic sense, confidence intervals with shortest expected length are obtained when one

bases the intervals on limiting normal distributions (as opposed to Student - t

statistics). As our paper indicates (see Proposition 3.1 and Corollary 3.9), the limiting

normal appears only when the number of replicates is allowed to diverge to infinity.

Secondly, infinite replicate schemes allow the simulator to consistently estimate a

parameter 02 (see Theorem 3.3), which is itself of some independent interest. The

parameter 02 measures the asymptotic variability of Y(t) (see (2.2)), if Y(t)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the National
Science Foundation under Grant ECS-8404809.
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measures the cost of running a stochastic sys..em at time t, then r is the long-run

2
dvpraqe ,ost, and 0 measures the extent to which the average cost Y(t) may deviate q

2
from r over the interval [0,t]. Thus, 0 may itself be important in determining the

S uitability of a policy to be evaluated over a planning horizon of t time units duration.

2. A Central Limit Theorem for the Method of Replication

Let (Y : i > i} be a sequence of i.i.d. replicates of the continuous-time process -]

(rn order to incorporate discrete-time stochastic sequences U = {Un : n ) 0) into our

framework, we set Y(t) 
=
Ut], where [t] denotes the greatest integer less than or

equal to t.) A replication procedure is a non-decreasing function

m : R R
+ 

(Rl
+  

[0,-)) for which there exists k : 
+  

(1,2 ....) such that:

(2.1) 1.) m(t) k(t) 4 t

Ii.) m(t) k(t)/t * 1 as t +

(if m(t) > 0, k(t) can be taken to be [t/m(t)]). We interpret k(t) as the number of

replicates Y1 ,...,Yk(t), each simulated to time m(t), associated with a computer budget

of t time units. Relation (2.1)i.) says that for each t ) 0, the replication procedure

m ust not use more time than is budgeted, whereas (2.1)ii.) requires that asymptotically one

uses all the time allotted. The estimator r(t) available after t time units of

Lomputer time is given by

k(t)1 Y Am Wt ))
r(t) = k(t) YmI t

t-I t Yis)ds.

1 0 1

A fjr the process Y, we shall assume throughout this paper that:

*..1 i.) ther,- exist constants r and 0 4 a < such that

X(t) 1/2 (Y(t)-r) ==> ON(0,1)

is t * , where N(0,1) is a standard normal random variable (r.v.)

S 2
I i.) the process {X(t) : t > 0) is uniformly integrable

1)
ill.) suptt EX(t)l : t . 01 < m.

-2-
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Note that (2.2)i.) implies that Y(t) => r as t + a, so that the parameter r is

necessarily the steady-state mean of Y. Also, (2.2)ii.) is equivalent to requiring that

2 2
- (2.3) v(t) I EX (t) + a

as t a; see Theorem 5.4 of BILLINGSLEY [l]. Conditions which guarantee (2.2i.) and

ii.) are available when Y is a real-valued functional of a discrete-time 4arkov chain

(see Theorems 1 and 3 in Section 16 of CHUNG [4]) or when Y is a real-valued functional

of a regenerative process (see Lemma 5 and corollary 9.1 of SMITH [10]). A sufficient

condition for (2.2)iii.) is provided by Theorem A, given in the Appendix.

Our first limit theorem shows that under a mild restriction on the replication

procedure, r(t) is an asymptotically normal estimator for r.

(2.4) THEOREM. Suppose that m2 (t)/t + - as t h. Ten,

0 t 2 (rlt) - r) ==> ON(0,1)

as t +

PROOF. By Theorem 2.3 of BILLINGSLEY [1), it is sufficient to show that each sequence

3 tn +- contains a subsequence tA such that

(2.5) Ct 2rlt') - r) == ON(0,1)

as n + a. There are three cases to consider:

case 1: suptk(tn) : n ) I < -: in this case, we can find a subsequence tn  such that

k(tn) = k > 1 for all n. Then,

kIc

(2.6) r(t.) - r - (Yi(m(t1) - r)

By (2.2)i.) and the independence of the Yi's it follows that

(-12.7) m(t') 1 (m(t1)) - r ..... k(m(tn)) - r)
==> ON(nI)

as n + a, where N(6 ,I) is a multivariate normal r.v. with mean vector 6 and

covariance matrix I. By the continuous mapping principle (Theorem 5.1 of BILLINGSLEY [1])

applied to the continuous function h(x) - (x1 +...+ Xk)/k 1x = (x,...,xk)), (2.6) and

* -3-
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(2.?) show that 1 /

(2.8) M(t')12(r t) -r) > a k 12N(0 1)

as n + . But by (2.1)ii.), k m(tA)/tA *1, s0 that (2.8) yields (2.5).

case 2: suptk(t) n > 1} = and a > 0: choose a subsequence t ' such that

14 kMt,) * as n + -. Note that

1, k(t')
(2.9) Wt )2 (r(t ) r) a n Z +

n n n Zin 8 n

where

Zjin = n (Y~ (m(t n)) - Er(tA))

n n n n

-- n n n n n

8 (t)2 (Er (t'I) - r)
n n nl

Since Er(t') =EYmt) it follows that

8 / t/2 (tl))/'2 t EX(m(t )
n n n 2n n

Uand hence (2.2)iii.) shows that the assumption m2  */ forces 8 to tend to zero.

Also, by (2.3) and (2.1)ii.), a n +0 as n + .- To treat the sum in (2.9), we view the

family of r.v.ls {Z. in 1 M kt'), n > 1 as a triangular array. Note that EZi 0

oil ~ and M
n

iZn

Furthermore, by Chebyshev's inequality,

ma {2 > ) EZ in 1
in E k( t )EJ14i~k(t') n

n

as n ~ , so we conclude that {Z in is holospoudic (see p. 196-206 of CHUNG [51 for

results and definitions). To show that

k(t'
n

(2.10) L Zi > N(0,1)
i= 1

-4-



as n + we need to verify Lindeberg's condition. observe that for nl > 0,

k(t' )j
2 2

SE{Z I Z > fl)

(2.11) 1 in n

2- 2 2j
k~t )EZ Z > n E{V ;V > k(t ')n}
n in inn n n

wh 2 -2
whr n m(tl)(Y(m(t')) - Er(t')/mt). Butn n n

V2 4 2v(m(t ))1 X(c) (EX(m(t)) 2
n n n n

so that (2.2)11.) and iii.) imply that IV 2) is uniformly integrable; thus, (2.11) goes to

zero as n + -, verifying (2.10).

case 3: sup{k(tn) :n ), 1) and a - 0

2We shall reduce this case to the one above, in which a > 0. Let Ybe the process

defined by

Y~)=Y(t) + 2- N(0,1)t1/

where N(0,1) is independent of Y. Then,

Xt) -t/2 t-1 f~C(s) - r) ds) - x(t) + N (0, 1

satisfies (2.2)1.) - iii.). From case 2, it follows that

(2.12) t1/2 (t)- r) -- > N(0,1)

as t .But the left-hand side of (2.12) has the distribution of

(2.13)1/2
(2.13)t (r(t) - r) + N(0,1)

where N(0,1) is independent of r(t). Letting c(t,u) be the characteristic function of

1/
t/2(r(t) -r), (2.12) and (2.13) prove that

c(t,u) *e-u 2/2 + , U/

as t + ,and hence c(t,u) + I for all u. So,

t1/ (r(t) - r) -> 0

This theorem shows that the length of each replication should asymptotically dominate

the total number of replicates, in the sense that m(t)/k(t) + as t
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3. Confidence Intervals for the Method of Replication.

Theorem 2.4 does not readily yield confidence intervals for r, since it involves the

unknown constant a. The type of confidence interval to be used depends on the behavior

of k(t).

2
(3.1) PkOPOSITION. Suppose d

2 
> 0 and k(t) k ) 2. Let

1 k(t)2

r(t) = 1 k\t) (Y.(m(t)) - r(t))2k(t)-1 iL

I her,

(3.2) k/2 (r(t) - r)/k 2 (t) ==> tk-1

as t + , where tk I is a Student-t r.v. with k - 1 degrees of freedom.

.N'kXO F. For any sequence tn  converging to infinity, relation (2.7) holds. Applying the

continuous mapping principle to the function

1/2- ( 1 k - ) 2 ) - 1/ 2

h(x+) = kc xk k-i1 (x i 'k) 2
i=1

2
where xk = (xI +...+ Xk)/k (note that h is appropriately continuous since 0 > 0), we

find that

k/ 2 
(r(t') - r)/r2 (t) ==>

n n tk- I

this proves (3.2).

3i.3) THEOREM. Assume that the process (X 4(t) t > 0} is uniformly integrable. If

-Ct) * as t * and m
2

(t)/t + as t + m, then

m(t)F(t) > 2

P "'F". Note that

k(t)-1 1 k(t) 2
nt kt~ t) 1

k(t)- k~- --1mt) ( (mlt)) - r(t) 
2

i=1

1 k(t)
k) m(t)(i.(m(t)) -r)

i=1

2
- m(t)(r(t) - r)

-6-
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By Theorem 2.4, t(r(t) - r)2 => 2N(0,1) 2  as t + (continuous mapping with

h(x) = x2), so

(3.5) m(t)(r(t) - r)2  t(r(t) - r)2  > 0t

as t , by (2.1)ii.) and the fact that k(t) + -. As for the other term in (3.4), note

that

2
(3.6) m(t)E(Yi (m(t)) - r) = v(t)

and

I k(t)

vark m(t)( - r)
2
)

i=
(3.7)

1 _t {EIX(t)14 _ v2 (t))

Since {X4 (t) t > 0) is uniformly integrable, it follows that EX () is a bounded

function (see (5.1) of [11) so that (2.3) implies that the variance term (3.7) tends to

zero as t . By Chebyshev's inequality,

k(t) 2

P11 m(t)(Ti(m(t)) - r)- v(t)I E}

k var(-k t) m(t)(Yi m(t)) - r) 2 ) + 0

as t + , by (3.6) and (3.7). Thus,
1 k(t)2

(3.8) - ) m(t)( (m(t)) - r) - v(t) -=> 0

as t * . Combining (2.3), (3.4), (3.5), and (3.8) yields the result.

The following corollary is immediate from Theorems 2.4 and 3.3.

(3.9) COROLLARY. Under the assumptions of Theorem 3.3,

(3.10) t12 (r(t) - r)/(m(t)r(t))/2 ==> N(0,1)

2
as t' provided 0 > 0.

Generation of confidence intervals for r, based on the limit theorems (3.2) and

(3.10), is straightforward. A condition guaranteeing that {X4 (t) t ; 0} is unitormly

integrable is given by Theorem B in the Appendix.

-7-



Appendix

Let Y be a non-delayed regenerative process with regeneration times

0 = T(0) < TMI) <... (See p. 298-302 of IINLAR [6]) for a discussion of regenerative

processes.) Assume that

(Al) E(fT 1 ) (1 + IYls)I)ds)8 < "

Then, SMITH [10] proved that Y satisfies (1.2)i.) and ii.) and that the steady-state mean

has the representation

(A2) r = E( fT(l) Y()ds)/ET(l)
0

Set Tk = T(k) - T(k-1), N(t) = max{k ) 0 : T(k) 4 t}, and

Zi = fT(i-1) (Y(s) - r)ds

THEOREM A. Under (Al), (2.2)iii.) is satisfied.

PROOF. It is easy to see that

(A3) ft Y(s)ds - rt 
=
N(t+1 Z T(N(t)+l) (Y(s) - rds

k=1

From (Al), it is obvious that E(1Zj1 + T < and thus Wald's identity implies that

N(t)+1

El I Zk) = E(N(t)+) EZk
k-1

(see p. 137 of CHUNG [5].) By the definition of Zk, (A2) proves that EZk = 0 and thus

the first term on the right-hand side of (A3) vanishes. For the second term, set

(A4) a(t) = E(IT(Nt)+l) (Y(s) - r)ds)
t

A simple renewal argument shows that a satisfies the renewal equation

a(t) = b(t) + (a * F)(t)

where * denotes convolution and

b(t) = E{T(1)(y(s) - r)ds T(1) > t}
t

F(t) - P(T(1) 4 t}

Since

. . " [." .- . " '_.. --8-,



a(t) 1( T k) iY(s) - rids)a~t) 4E( k 1 T(k-1)
k= 1

4 E(N(t) + 1) *E(fT( 1
)Y(s) - rids) < -

by Wald's equality and (Al), it is clear that a(-) is bounded over finite intervals.

Hence, by Theorem 2.3 of IINLAR [6],

(AS) a(t) - (b * U)(t)

where U(t) - ) P(T(k) 4 t} = EN(t) + 1. But

k-0

b(t) ' E{ f (1)(jY(s)j + r)ds ; T() > t

(--2-E E{()2T(1L.Ys + r)ds ; T(1) > t)

t

2 {T(1 )
2 

fTi.1Sjy(.sj + rTdl ; I )>t

t

20

and thus .(t) ( c min{l, t
- 2  

for some cI . So, there exists a and c2  such that

(A6)

ja(t)l = If[0,t] b(t-s)u(ds)l

f (t-a,t] c2 U(ds) + f[0,t-a] c2 t- U(ds

c c 2 ( U ( t ) - U ( t - 0) ) + c 2  U ( t ) / t ;

the first term above is bounded in t by relation (1.7), p. 360, of FELLER [71, whereas

the second is bounded by the elementary renewal theorem (see Theorem 5.5.2 of CHUNG [5 ).

From (A4) and (AS), it is evident from (A3) that

E(ft Y(s)ds - rt)

is a bounded function of t, proving the theorem.

THEOREM B. Assume (Al) holds. Then,

EX(t)
4 , 3a

4

as t * ', and (X 4(t) t ) 0) is uniformly integrable.

-9-



PkuUOL. N )te that

n

M(n) z k
k=1

i<5 a mirtinqale. For t fixed, set Mn = ((N(t)+1) n), where a b -min(a,b).

Thice N(t) + 1 is a stopping time, it follows that (M n ) I} is also a martingale.

'See Proposition 5.26 of BREIMAN (2].)

Let Dn  M - n_ ZI{N(t)+1 ; n). By Burkholder's [3] square function

inequality for martingales

6 )3 N(t )+1 2)3

'A7) max 4M C cE( 1 2) c 6 E( z)
I k<- j=1

where ck 18(k
3/
2/(k-1))k. Note that since N(t) < - a.s., Mn + M(N(t)+1) a.s. as

By (A7) and Fatou's lemma,

6 N(t)+1 23;.) EM(N(t)+1)
6 

I lir E6 rC t )6E Z

- n+- j.1

ttlnCj 2 EZ
2 , 

observe that Minkowski's inequality yields

N(t)+1 3 N(t)+1
(\': ) 2= 2.I 3

L/z E() U. + EZ1 (N(t)+I))

3=1 J=
1  1

N(t)+1 3 1/3 2 1/3
E = 1) Ut + E Z E (N(t)+1)J

48 max(EI) U.I EZ2
.E(N(t)+1))

j=1 1

A the Burkholder inequality a second time, we find that

Nft)+1 N(t)+1 3/2 N(t)+1 2...'Elj- Uj13 , E ( U' u2)  C % (1 + E( j) u 2))

j-l j=1 .

* .-.f .t ,f 5MITHi [10] proves that under (Al),

N(t)+1 2 2vatr ) U) O(t);

j=1

;..ality therf,re implies that the right-hand side of (Al0) is O(t2

fi,. 1.r-ira A12, w- conclude that the bound in (A9) is O(t
3

), so that (AB) proves that

-10-
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N(t)+1

(All) EM(N(t)+1)
6 

= Z = 0(t
3
)

Furthermore, we have that

6 N( (t)1

E(fT(N(t)+ (M(s) - r)ds) 6 <( j )  JY(s) rlds, 6t Tj-1)

which is 0(t) by Wald's equality and (Al). So, by Minkowski's inequality and (A3), we

find that

6sup EX(t) <
t

thus IX4 (t) t > 0} is uniformly integrable and EX4 (t) a o4 EN(0,1) 4  30 4 as t + -.

(A12). LEMMA. If ET(1)m < w for some m ) 1, then E(N(t) + 1 )m - O(tm ) as t +in.

PROOF. It is well known that for any non-negative r.v. N, ENm is bounded by a multiple

of

(A13) k 
m- 1 

PIN ) k}

k-1

Since {N(t) + 1 ) k} = {T(k) & t}, (A13) is bounded by

(A14) k
m- 1 + kM

1 
P{T(k) 4 t - ku}

k42t/u k>2t/p

(p = ET(1), ;(k) T(k) - kp); comparison of the first term in (A14) with the integral

of g(x) = xm - 1 shows that it is of order o(tm). For the second term, observe that if

k > 2t/p, then Wk/2 < pk - t so that term is dominated by

(A15) k-*P{T(k) ) pk/2}
k>2t/p

By Chebyshev's inequality and (Al), the probability in (A15) is bounded by

E;(k)8/( k/2) 8 , which is O(k- 4 ). (since ET(k)8 = 0(k4 ), as may be verified

algebraically.) Thus, (A15) is summable and bounded in t; (A14) then yields our result.

It is worth noting that (Al) is automatically satisfied when Y corresponds to an

irreducible finite state Markov chain, in either discrete or continuous time.

-11- .



References

1. BILLINGSLEY, P. Convergence of Probability Measures. John Wiley, New York (1960).

2. BREIMAN, L. Probability. Addison-Wesley, Reading, Massachusetts (1968).

3. BURKHOLCER, D. Distribution function inequalities for martingales. Ann. Probability

1 (1973), 19-42.

4. CHUNG, K. L. Markov Chains with Stationary Transition Probabilities. Springer-

Verlag, New York (1967).

5. CHUNG, K. L. A Course in Probability Theory. Academic Press, New York (1974).

6. qINLAR, E. Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs,

NJ. (1975).

7. FELLER, W. An Introduction to Probability Theory and its Applications, Volume II.

John Wiley, New York (1971).

8. LAW, A. M. and KELTON, W. D. Simulation Modeling and Analysis. McGraw-Hill, New

York (1982).

9. SCHMEISER, B. Batch size effects in the analysis of simulation output, Operations

Research 30 (1982), 556-568.

10. SMITH, W. L. Regenerative stochastic processes. Proc. Roy. Soc. London Ser. A

232 (1955), 6-31.

S

PWG/jvs

-12-

|.

0.



SECURITY CLASSIFICATION OF THIS PAGE ("hon Dto Pnloard)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSDEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

#2789

4. TITLE (and Sublillo) 11. TYPE Of REPORT 6 PERIOD COVERED

C -Summary Report - no specific
Limit Theorems for the Method of Replication reporting period.

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(s)
ECS-8404809

Peter W. Glynn DAAGZ9-80-C-OO 41

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERSMathematics Research Center, University of Work Unit Number 5 -

610 Walnut Street Wisconsin Optimization and Large 4
Madison, Wisconsin 53705 Scale Systems

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

February 1985
See Item 18 below IS. NUMBEROP PAGES

12

14. MONITORING AGENCY NAME A ADDRESS(IS different traom Controflng Ollie) 15. SECURITY CLASS. (of fltl. report)

UNCLASSIFIED
ISA. OECL ASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract etered In Block 30, it dlffrent from Report)

IS. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

ft. KEY WORDS (Continue on overse side It necoeoast and identify by block mamber)

simulation, steady-state, replication

20. ABSTRACT (Contfnue on revere oid* It necessary and Identity by block nwimbor)

The method of replication is frequently used by simulators to estimate
steady-state quantities. In this paper, we obtain conditions under which thi
method yields asymptotically valid confidence intervals for steady-state
means.

DD ,OR 1473 EDITION OF I NOV S 5OBSOLETEU= DDJ AN 7, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Dote.

m , & - -%n " -, - n; n. t %a .. .- .- ~ n * . , - _. . '. - .. "._, - - , . . - .-. . ...



FILMED

6-85

DTIC


